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ABSTRACT 

It is shown that any n point metric space is up to log n lipeomorphic to a subset 
of Hilbert space. We also exhibit an example of an n point metric space which 
cannot be embedded in Hilbert space with distortion less than 
(log n)/(loglog n), showin~ that the positive result is essentially best possible. 
The methods used are of probabilistic nature. For instance, to construct our 
example, we make use of random graphs. 

1. Introduction and statement of results 

This note  fits in the p rog ram of investigating the g e o m e t r y  of finite metr ic  

spaces deve loped  more  intensively over  the last years.  A m o n g  the mot iva t ions  

for  this research,  let us men t ion  a re la t ion with work  of M. G r o m o v  on 

R i e m a n n i a n  manifolds  [2] and the d e v e l o p m e n t  of the non- l inear  theory  of 

Banach  spaces (cf. [1]). We  refer  the r eader  to the survey of J. L indens t rauss  [4] 

for  a detai led exposi t ion of this theme.  

Several  not ions appear ing  :in the theory  of f ini te-dimensional  n o r m e d  spaces 

can be r e fo rmula t ed  for  finite metr ic  spaces.  The  l inear i somorph i sms  are 

replaced by bi-Lipschitz maps  and the so-called B a n a c h - M a z u r  dis tance by the 

Lipschitz dis tance or distort ion.  Thus,  denot ing  "ca rd ina l "  by [ 

DEFINITION. Let  X, d and Y, 8 be  (finite) metr ic  spaces,  I X  I = I Y I. Le t  

dist(X, Y) = inf{ ItFIIL, pll F-111Lip ; F one -one  m a p  f rom X onto  Y} 

where  

8 (F( s ) ,F ( t ) )  IIFL = sup 
s,,,i ,x d(s , t )  
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The by now classical theorem of F. John asserts that any n-dimensional 

normed space is at distance at most k/n  from Hilbert space. Since the logarithm 
of the cardinal of the (finite) metric space is the analogue of the dimension of the 
linear space (for reason of entropy), the natural question arising is whether or 

not given a finite metric space X, there exists a subset Y of Hilbert space 

satisfying IXI = I YI and dist(X, Y)=< (log IX I) "2. a result due to W. B. Johnson 
and J. Lindenstrauss (see [3]) asserts that this set Y can then be chosen in a 

Hilbert space of dimension at most C. log IX I, a fact which will be exploited in 

this paper. 

The previous embedding problem is by now almost completely solved in 

following two statements: 

PROPOSITION 1. Given a finite metric space X, d there exists a one-to-one map 
F from X into Hilbert space such that 

I[ 'LplIF lllLip--< c log lX I. 

PROeOSn'ION 2. There exists a metric space X, d of cardinal IX] = n (for any 
positive integer n) so that the distance from X to an n-point subset of Hilbert space 
is at least c (log n)/(log log n). 

In Propositions 1 and 2, the letters C < o~, c > 0 stand for numerical constants. 

The proof of Proposition 1 depends on the following inequality. 

PROPOSITION 3. Let X, d be a finite metric space and denote for each positive 
number s by ~s the set of all subsets of X with cardinal [s]. There is a numerical 
constant C such that for each pair x, y of points in X 

(1) d(x , y )<-c  f /X l l  {[~S] l A ~  e I d ( x , A ) - d ( y , A ) l }  ds. 
S s 

As usual, d(x, A )  = inL~A d(x, z). 

From (1), the deduction of Proposition t is straightforward. Denote  by 2 x the 

set of all subsets X and consider the map u : X ~ l ~ x  given by u ( x ) =  

{d(x, A )}ACX. The inequality 

I d(x, a ) -  d(y, a) l  <= d(x, y) 

implies that II u ILp-<- 1. Let next A be the diagonal map from 17,, to l~x defined 

by A,A, = s-~[~, I -~ where I a l  = s. Thus A is a linear operator and 

~l~,l = log lXll 
d__s 

IIAII,  , --IIA IIN,,o,,,)-= s 
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where N ( . , .  ) refers to the corresponding space of nuclear opeartors (see [5] for 

definitions and basic theory). Clearly 

II A o .  I1,,,,~,~... ~ log I x I 

and inequality (1) asserts that 

(2) II(h° u)-' II.p --< c. 

Notice at this point that we just obtained an analogue of the fact that given an 

n-dimensional normed space iV, there is a linear map j:E----~ l ~ satisfying 

IIJlIN,E,,',<= n and IIJ-'ll-<-1. This result is best possible. 
To complete the proof of Proposition 1, factor A through 12 x as A = A"A' 

where A': l~x---~ l~x, A": l~x--~ 1'2 x are diagonal operators defined by A~a) = A~'a)= 
A(a). Then 

IIm' l l - - - ( log lx l )  ''~ and Ilm"l[-<_(loglXl) ''~ 

and hence, in view of (2), 

II m'o u II~,,~x.,~x)_- < (log I X I)lP-; II (A'o u) 'llup =< C(log l x I) 1/2. 

This completes the proof. 

Proposition 2 now implies that there is no metric analogue of the F. John 
ellipsoid for normed spaces, or equivalently the (dim E)  Ij~ estimates for the 

2-summing norm of the identity operator (see again [5] for details). By the 
distance estimate (in the linear and hence Lipschitz sense) 

dist(E, l~mE) <= (dim E)  1/~ 

we get also as a consequence of Proposition 2 

COROLLARY 4. There is no uniform estimation J:or the distortion of n-point 
metric spaces to a subset of some (log n )-dimensional normed space. 

This gives a negative solution to a question raised in [3]. Notice that the map 

F(x )={d(x , y ) }~x  gives a Lipschitz embedding of X,d  into l~l with 

IIFIL, IIF ' L ,  = a. In particular, if we denote by ~b(n) the smallest integer such 

that any n-point metric space is at Lipschitz distance at most 2 from a subset of 

some qJ(nJ-dimensional norraed space, we get 

log n =< ~(n)  =< n. 
[log log n 

At the time of writing, no more information on qt seems to be known. 
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If only embeddings in l~-spaces are allowed, some n-point metric spaces will 

require k as large as log k - log n. This happens for instance if we take for X an 

n-point set in the unit sphere of l~,, m = c(logn),  forming a p-net for the 

Euclidean distance. If F : X ~  l~, then by extending the coordinate maps to 

Lipschitz maps on the /~-sphere, one gets indeed 

logk _>-p logn whenever IlFll,i~JlF-'ll,,~<-_c/p 

as a consequence of measure-concentration phenomenon on Euclidean spheres 

(see [3] for details on this subject). 

2. Proof of Proposition 3 

Inequality (1) may clearly be rewritten in the form 

log Ix l 

(3) ~ {l~2pl- lA~,p]d(x ,A)-d(y ,a) l}~cd(x,y) .  

Let us introduce some notation. Denote for x ~ X, p > 0 by B(x, p) the ball in 

X, d with midpoint x and radius p, thus 

B(x,p)= {y E X ;  d(x, y)< O} 

and consider ~x(p) = ]B(x,p)l,  which is a decreasing function of p. 

Fix now distinct points x,y in X, d(x ,y)=e>O. Let {p,}o~-,~=,. be the 

increasing sequence of positive numbers defined by 

po = O, 

p,=inf{p>O; ~ox(p)>=2 ' and q~y(p)>_-2'} ( t <  t*), 

p,. = e/2. 

Denoting ~+ (resp. ¢-)  the right (resp. left) limit, it follows that 

+ 

q~+(p,) => 2' andq~y(p,)=>2 ' f o r 0 < = t < t  *, 

~o;-(p,)<2 ' or ~r(p,)M2' f o r 0 M t < t  *. 

Fix 0 < t =< t*. Take s = 2 e such that s. 2' ~ n/lO. Let 0 < p < p, and 0 < 6 < p,. 

Suppose ~-(p,) < ~p~(p,), hence I B(x, p) l<  2'. Since B(x, p,) n B(y, p,) = O, we 

may write by elementary probabilistic considerations 

I~,1-1 ~ Id(x ,A)-d(y ,A) l  I 
A ~ s  

>=(p - p ,  +,~)l~s I 'I{A c ~ , ; A  n B ( x , p ) - - ®  and A O B ( y , p , -  ~)~Q}I  

>-_ c(p - p, + ,~)1 ~ I I I{A ~ ' ~  ; A N B(y, p, - ~) ~ Q}I. 
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+ 

Now, if 6 < p, - p,_,, [ B(y,p, - 6)[ => q~y (p,_~) => 2'-' by construction. Conse- 
quently, letting p --* p, 

(4) s =2". 

Notice that the values of p corresponding to t = 1 . . . .  , t* may be chosen distinct. 

Clearly, summutation of (4) over t yields (3). This completes the proof. 

3. Metric spaces associated to graphs; proof of Proposition 2 

A (non-oriented) graph G on a set X (which elements are called the vertices 
of G) is a collection of pairs (the edges of G) of distinct elements of X. A path Q 
in G is a chain of consecutive edges; their number is the path length [Q I of O. If 
G is a connected graph, i.e. any two points in X are endpoints of some chain in 

G, G defines a metric on X, 

dG (x, y) = inf{ [ Q [; O is a path in G connecting x and y }. 

Our approach to Proposition 2 consists in analysing metric spaces associated to 
random graphs. 

Let G be a random graph on n vertices with edge probability 6 = M/n,  where 
M is to be fixed later. Denote cg the sample space, which identifies with {0,1} ~p 
equipped with product measure P. 

LEMMA 1. /f  

then 

PROOF. 
Next, let 

LEMMA 2. 

PROOF. 

log n 
k < ,~ =- C log M and x C y in X, 

1 
P~[da (x, y)=< k] < 200" 

Estimate P~ [d~ (x, y)  < k] by ZiL-~ ("j2)6J+~. 

~ = { G @ ~; do (x, y) => ½A for at least -~n 2 pairs (x, y }}. 

V , [~ , ]  > 1-~0. 

Denoting Ax the diagonal of X, write 

f~ ,2~x~\~, man{do (x, y ) ,A}=  > ( 2 )  A { 1 - s u p  P[dc (x, y ) <  A]} 
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from where, by Lemma 1, 

n A 199 
(2)  AP[Y{'] + { ( 2 ) 2  + -~  A} P '~  \ ~ ' ]  > =2--~ (2)  A" 

The minoration on P[~t] follows. 

We now examine the probability for connectivity of G. Define ~2 = {G E ~; 
G connected}. 

LEMMA 3. P ,  [Y(2] > 1 - ~o provided M > C log n. 

PROOF. The fact that G is not connected is equivalent to the existence of a 
nontrivial subset A of X such that no point in A is connected to a point in X \ A 
by an edge in G. Hence 

implying the lemma. 

' "(7) PlCg \ Yg2] =< ~] ( 1 - 6 y  ("-/) 
i=1 

As a consequence of these observations 

LEMMA 4, Fix C log n < M ~ n. There is a collection ~g of connected graphs 
on X (IX[ = n) such that 

( .)  Ic~l>expcMn, 
{ l°gn'~2 G' 

( . . )  dist(X, do;X,  do,)>c\-fff~M ] if G #  in ~. 

PROOF. Defining Y( = ~1 71 ~2, it follows P~[Y[] > ~  from Lemmas 2 and 3. 
Fix an integer N = exp cMn and consider the product space 1)= Q~=I,_.,N~ ~i) 
where each factor ~0) is a copy of Y( C ~3 equipped with normalized measure. 
Thus the elements t~ of 1) are sequences of graphs on X. Take 

N 0 I~JC~;IIflILip(Gi~Gi)>A1 IT= 
l ~ - - i # j ~ N  f : X ~ X  

I .~., ) 

[ one-to-one 

where G~ (resp. Gj) refers to X, do,. 
Then, by definition of Y(~ 

P(f l \~ ' )=<N:n!  sup P ~ [ G ;  {x , y}~G whenever do,(f(x),f(y))>-2] 

<= 2N2n ! (1 - ~),2/4. 
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For appropriate choice of N, it follows that 1)\11' has small measure and any 

element G in f~' provides a collection c¢ satisfying the lemma. 

PROOF OF PROPOSITION 2. Let Y be an n-point metric space corresponding to 

a subset of Hilbert space. It follows from the Johnson-Lindenstrauss result [3] 

that Y is 2 Lipeomorphic to a subset of l~ where the dimension m < C log n. Let 

(¢ be the family of graphs on n vertices given by Lemma 4 for some choice of M. 
In computing the distortion of X, de (G ~ c¢) to a subspace Y or l~, we may 

suppose 

1 ~  ~ n  2 - - = l l s - t l l 2  < i f s ~ t i n  Y. 
n 

Therefore Y may be choose:rl in a 1/n-net in the nLradius ball of l~,, leading to 

at most exp[Cn(log n) 2] samples. 

If M > C(log n)2, I ~ I will be larger (by ( . )  of Lemma 4). By construction and 
Lemma 4 ( . . ) ,  it follows that for some G in c~, X,d~ is only up to 

c(log n)/(loglog n) Lipschitz isomorphic to a subset of Hilbert space. 
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